Developmental status of Supra Thermal & Energetic Particle Spectrometer (STEPS), A subsystem of ASPEX payload

S. K. Goyal, P. Janardhan, M. Shanmugam, A. R. Patel, S. V. Vadawale, T. Ladiya, Neeraj K. Tiwari, D. Chakrabarty, S. B. Banerjee, A. R. Srinivas, P. Shukla, P. Kumar, K. P. Subramanian, B. Bapat, P. R. Adhyaru

Physical Research Laboratory, Ahmedabad, INDIA

Aditya Solar wind & Particle Experiment (ASPEX)

>ASPEX is one of the payloads on board Aditya – L1 mission, to be placed in a halo orbit around the L1 Lagrangian point, lying between the Sun and the Earth.

 \geq Scientific objective is to study the variations of solar wind properties; distribution and spectral characteristics of supra-thermal ions and solar energetic particles (SEPs), as a function of magnitude and location of the solar explosions occurring on the Sun during the solar cycle.

>It will make in-situ, multi directional measurements of alpha particles and protons in the energy range of 100 eV/n to 5 MeV/n.

 \succ This will be the first time when such a large energy range measurements will be carried out from multiple directions at L1 point with 3 – axis stabilized spacecraft.

> Early warning of space weather will be transmitted to the Earth for necessary protection.

Supra Thermal & Energetic Particle Spectrometer (STEPS)

- > STEPS is an independent science package of ASPEX payload.
- \succ It will measure the protons, alpha and other heavier particles in the energy range of 20 keV/n to 5 MeV/n.
- \succ It has been configured into 3 packages:
 - STEPS1 detector package

Magnetic assembly

With 6 mm shielding thickness of MS material		
Distance (cm)	Magnetic field	
	(gauss)	
0		

Fig. 1: Mounting location of ASPEX payload (SWIS & STEPS) on Aditya – L1 S/c

STEPS orientations

Туре	Direction	FOVAxis	FOV Cone
Species separated spectra	Sun pointing	12° W of S/c–Sun line, In ecliptic plane	±8 °
	Parker Spiral Pointing	50° W of S/c–Sun line, In ecliptic plane	±15°
	Earth Pointing	24° W of S/c–Earth line, In ecliptic plane	±20°
Species Integrated spectra	Between Sun and Parker spiral	27.5° W of S/c–Sun line, In ecliptic plane,	±7.5°
	North Pointing	Perpendicular to ecliptic plane towards North	±20°
	South Pointing	Perpendicular to ecliptic plane towards South	±20°

Testing of Si detector (single element) with X – ray sources

Detector configuration for STEPS (species separated spectra)

Magnets for electron deflection

Thermal chamber test

Fig. 9: Testing of single element Si detector (with discrete components). Results show that energy threshold is < 10 keV.

Testing of Si detector (single element) with particles

Fig. 4: Double window Si detector (300 µm thick)

Fig. 5: STEPS detector assembly with double window Si detector and Scintillator detector

Array of Si PM (PCB size:

28 mm x 5 mm x 1.6 mm)

Bottom side

Si PM (4mm x 4 mm)

Fig. 6: Plastic Scintillator with Si Photomultiplier (SiPM) readout

Summary

